Wishful Coding

Didn't you ever wish your
computer understood you?

EV3 Mars Rover

I have tried before to make a Rocker-Bogie robot, similar to NASA’s Mars rovers. But with the NXT I always had a shortage of structural parts, leading to incomplete and unstable constructions.

With the EV3 it works surprisingly well, and I was able to power all the wheels with two motors, and leave enough parts to make a robotic arm.

It looks lovely, and the principle works, but the actual capabilities are slightly disappointing as the torque is very limited. Climbing any large obstacles pushes the bogie off the ground and rattles some of the many gears.

[gallery columns=”2” size=”medium” ids=”555,550,551,552,553,554”]

Published on

AVR Fixed-point in-place Fast Fourier Transform

In various web pages and projects across the web lives a mysterious file that does a FFT in C. There are several different versions modified by various people to do various things. I have no idea where it came form.

All I know is that this particular version by yours truly runs on Arduino and 8-bit AVR chips in general.

#include <avr/pgmspace.h>
#include <Arduino.h>

/* fix_fft.c - Fixed-point in-place Fast Fourier Transform  */
/*
  All data are fixed-point short integers, in which -32768
  to +32768 represent -1.0 to +1.0 respectively. Integer
  arithmetic is used for speed, instead of the more natural
  floating-point.

  For the forward FFT (time -> freq), fixed scaling is
  performed to prevent arithmetic overflow, and to map a 0dB
  sine/cosine wave (i.e. amplitude = 32767) to two -6dB freq
  coefficients. The return value is always 0.

  For the inverse FFT (freq -> time), fixed scaling cannot be
  done, as two 0dB coefficients would sum to a peak amplitude
  of 64K, overflowing the 32k range of the fixed-point integers.
  Thus, the fix_fft() routine performs variable scaling, and
  returns a value which is the number of bits LEFT by which
  the output must be shifted to get the actual amplitude
  (i.e. if fix_fft() returns 3, each value of fr[] and fi[]
  must be multiplied by 8 (2**3) for proper scaling.
  Clearly, this cannot be done within fixed-point short
  integers. In practice, if the result is to be used as a
  filter, the scale_shift can usually be ignored, as the
  result will be approximately correctly normalized as is.

  Written by:  Tom Roberts  11/8/89
  Made portable:  Malcolm Slaney 12/15/94 malcolm@interval.com
  Enhanced:  Dimitrios P. Bouras  14 Jun 2006 dbouras@ieee.org
  AVR: Pepijn de Vos 8 March 2015
*/

#define N_WAVE      1024    /* full length of Sinewave[] */
#define LOG2_N_WAVE 10      /* log2(N_WAVE) */

/*
  Henceforth "short" implies 16-bit word. If this is not
  the case in your architecture, please replace "short"
  with a type definition which *is* a 16-bit word.
*/

/*
  Since we only use 3/4 of N_WAVE, we define only
  this many samples, in order to conserve data space.
*/
const short Sinewave[N_WAVE-N_WAVE/4] PROGMEM = {
      0,    201,    402,    603,    804,   1005,   1206,   1406,
   1607,   1808,   2009,   2209,   2410,   2610,   2811,   3011,
   3211,   3411,   3611,   3811,   4011,   4210,   4409,   4608,
   4807,   5006,   5205,   5403,   5601,   5799,   5997,   6195,
   6392,   6589,   6786,   6982,   7179,   7375,   7571,   7766,
   7961,   8156,   8351,   8545,   8739,   8932,   9126,   9319,
   9511,   9703,   9895,  10087,  10278,  10469,  10659,  10849,
  11038,  11227,  11416,  11604,  11792,  11980,  12166,  12353,
  12539,  12724,  12909,  13094,  13278,  13462,  13645,  13827,
  14009,  14191,  14372,  14552,  14732,  14911,  15090,  15268,
  15446,  15623,  15799,  15975,  16150,  16325,  16499,  16672,
  16845,  17017,  17189,  17360,  17530,  17699,  17868,  18036,
  18204,  18371,  18537,  18702,  18867,  19031,  19194,  19357,
  19519,  19680,  19840,  20000,  20159,  20317,  20474,  20631,
  20787,  20942,  21096,  21249,  21402,  21554,  21705,  21855,
  22004,  22153,  22301,  22448,  22594,  22739,  22883,  23027,
  23169,  23311,  23452,  23592,  23731,  23869,  24006,  24143,
  24278,  24413,  24546,  24679,  24811,  24942,  25072,  25201,
  25329,  25456,  25582,  25707,  25831,  25954,  26077,  26198,
  26318,  26437,  26556,  26673,  26789,  26905,  27019,  27132,
  27244,  27355,  27466,  27575,  27683,  27790,  27896,  28001,
  28105,  28208,  28309,  28410,  28510,  28608,  28706,  28802,
  28897,  28992,  29085,  29177,  29268,  29358,  29446,  29534,
  29621,  29706,  29790,  29873,  29955,  30036,  30116,  30195,
  30272,  30349,  30424,  30498,  30571,  30643,  30713,  30783,
  30851,  30918,  30984,  31049,  31113,  31175,  31236,  31297,
  31356,  31413,  31470,  31525,  31580,  31633,  31684,  31735,
  31785,  31833,  31880,  31926,  31970,  32014,  32056,  32097,
  32137,  32176,  32213,  32249,  32284,  32318,  32350,  32382,
  32412,  32441,  32468,  32495,  32520,  32544,  32567,  32588,
  32609,  32628,  32646,  32662,  32678,  32692,  32705,  32717,
  32727,  32736,  32744,  32751,  32757,  32761,  32764,  32766,
  32767,  32766,  32764,  32761,  32757,  32751,  32744,  32736,
  32727,  32717,  32705,  32692,  32678,  32662,  32646,  32628,
  32609,  32588,  32567,  32544,  32520,  32495,  32468,  32441,
  32412,  32382,  32350,  32318,  32284,  32249,  32213,  32176,
  32137,  32097,  32056,  32014,  31970,  31926,  31880,  31833,
  31785,  31735,  31684,  31633,  31580,  31525,  31470,  31413,
  31356,  31297,  31236,  31175,  31113,  31049,  30984,  30918,
  30851,  30783,  30713,  30643,  30571,  30498,  30424,  30349,
  30272,  30195,  30116,  30036,  29955,  29873,  29790,  29706,
  29621,  29534,  29446,  29358,  29268,  29177,  29085,  28992,
  28897,  28802,  28706,  28608,  28510,  28410,  28309,  28208,
  28105,  28001,  27896,  27790,  27683,  27575,  27466,  27355,
  27244,  27132,  27019,  26905,  26789,  26673,  26556,  26437,
  26318,  26198,  26077,  25954,  25831,  25707,  25582,  25456,
  25329,  25201,  25072,  24942,  24811,  24679,  24546,  24413,
  24278,  24143,  24006,  23869,  23731,  23592,  23452,  23311,
  23169,  23027,  22883,  22739,  22594,  22448,  22301,  22153,
  22004,  21855,  21705,  21554,  21402,  21249,  21096,  20942,
  20787,  20631,  20474,  20317,  20159,  20000,  19840,  19680,
  19519,  19357,  19194,  19031,  18867,  18702,  18537,  18371,
  18204,  18036,  17868,  17699,  17530,  17360,  17189,  17017,
  16845,  16672,  16499,  16325,  16150,  15975,  15799,  15623,
  15446,  15268,  15090,  14911,  14732,  14552,  14372,  14191,
  14009,  13827,  13645,  13462,  13278,  13094,  12909,  12724,
  12539,  12353,  12166,  11980,  11792,  11604,  11416,  11227,
  11038,  10849,  10659,  10469,  10278,  10087,   9895,   9703,
   9511,   9319,   9126,   8932,   8739,   8545,   8351,   8156,
   7961,   7766,   7571,   7375,   7179,   6982,   6786,   6589,
   6392,   6195,   5997,   5799,   5601,   5403,   5205,   5006,
   4807,   4608,   4409,   4210,   4011,   3811,   3611,   3411,
   3211,   3011,   2811,   2610,   2410,   2209,   2009,   1808,
   1607,   1406,   1206,   1005,    804,    603,    402,    201,
      0,   -201,   -402,   -603,   -804,  -1005,  -1206,  -1406,
  -1607,  -1808,  -2009,  -2209,  -2410,  -2610,  -2811,  -3011,
  -3211,  -3411,  -3611,  -3811,  -4011,  -4210,  -4409,  -4608,
  -4807,  -5006,  -5205,  -5403,  -5601,  -5799,  -5997,  -6195,
  -6392,  -6589,  -6786,  -6982,  -7179,  -7375,  -7571,  -7766,
  -7961,  -8156,  -8351,  -8545,  -8739,  -8932,  -9126,  -9319,
  -9511,  -9703,  -9895, -10087, -10278, -10469, -10659, -10849,
 -11038, -11227, -11416, -11604, -11792, -11980, -12166, -12353,
 -12539, -12724, -12909, -13094, -13278, -13462, -13645, -13827,
 -14009, -14191, -14372, -14552, -14732, -14911, -15090, -15268,
 -15446, -15623, -15799, -15975, -16150, -16325, -16499, -16672,
 -16845, -17017, -17189, -17360, -17530, -17699, -17868, -18036,
 -18204, -18371, -18537, -18702, -18867, -19031, -19194, -19357,
 -19519, -19680, -19840, -20000, -20159, -20317, -20474, -20631,
 -20787, -20942, -21096, -21249, -21402, -21554, -21705, -21855,
 -22004, -22153, -22301, -22448, -22594, -22739, -22883, -23027,
 -23169, -23311, -23452, -23592, -23731, -23869, -24006, -24143,
 -24278, -24413, -24546, -24679, -24811, -24942, -25072, -25201,
 -25329, -25456, -25582, -25707, -25831, -25954, -26077, -26198,
 -26318, -26437, -26556, -26673, -26789, -26905, -27019, -27132,
 -27244, -27355, -27466, -27575, -27683, -27790, -27896, -28001,
 -28105, -28208, -28309, -28410, -28510, -28608, -28706, -28802,
 -28897, -28992, -29085, -29177, -29268, -29358, -29446, -29534,
 -29621, -29706, -29790, -29873, -29955, -30036, -30116, -30195,
 -30272, -30349, -30424, -30498, -30571, -30643, -30713, -30783,
 -30851, -30918, -30984, -31049, -31113, -31175, -31236, -31297,
 -31356, -31413, -31470, -31525, -31580, -31633, -31684, -31735,
 -31785, -31833, -31880, -31926, -31970, -32014, -32056, -32097,
 -32137, -32176, -32213, -32249, -32284, -32318, -32350, -32382,
 -32412, -32441, -32468, -32495, -32520, -32544, -32567, -32588,
 -32609, -32628, -32646, -32662, -32678, -32692, -32705, -32717,
 -32727, -32736, -32744, -32751, -32757, -32761, -32764, -32766,
};

/*
  fix_mpy() - fixed-point multiplication & scaling.
  Substitute inline assembly for hardware-specific
  optimization suited to a particluar DSP processor.
  Scaling ensures that result remains 16-bit.
*/
short fix_mpy(short a, short b)
{
	/* shift right one less bit (i.e. 15-1) */
	long c = ((long)a * (long)b) >> 14;
	/* last bit shifted out = rounding-bit */
	b = c & 0x01;
	/* last shift + rounding bit */
	a = (c >> 1) + b;
	return a;
}

/*
  fix_fft() - perform forward/inverse fast Fourier transform.
  fr[n],fi[n] are real and imaginary arrays, both INPUT AND
  RESULT (in-place FFT), with 0 <= n < 2**m; set inverse to
  0 for forward transform (FFT), or 1 for iFFT.
*/
int fix_fft(short fr[], short fi[], short m, short inverse)
{
	long mr, nn, i, j, l, k, istep, n, scale, shift;
	short qr, qi, tr, ti, wr, wi;

	n = 1 << m;

	/* max FFT size = N_WAVE */
	if (n > N_WAVE)
		return -1;

	mr = 0;
	nn = n - 1;
	scale = 0;

	/* decimation in time - re-order data */
	for (m=1; m<=nn; ++m) {
		l = n;
		do {
			l >>= 1;
		} while (mr+l > nn);
		mr = (mr & (l-1)) + l;

		if (mr <= m)
			continue;
		tr = fr[m];
		fr[m] = fr[mr];
		fr[mr] = tr;
		ti = fi[m];
		fi[m] = fi[mr];
		fi[mr] = ti;
	}

	l = 1;
	k = LOG2_N_WAVE-1;
	while (l < n) {
		if (inverse) {
			/* variable scaling, depending upon data */
			shift = 0;
			for (i=0; i<n; ++i) {
				j = fr[i];
				if (j < 0)
					j = -j;
				m = fi[i];
				if (m < 0)
					m = -m;
				if (j > 16383 || m > 16383) {
					shift = 1;
					break;
				}
			}
			if (shift)
				++scale;
		} else {
			/*
			  fixed scaling, for proper normalization --
			  there will be log2(n) passes, so this results
			  in an overall factor of 1/n, distributed to
			  maximize arithmetic accuracy.
			*/
			shift = 1;
		}
		/*
		  it may not be obvious, but the shift will be
		  performed on each data point exactly once,
		  during this pass.
		*/
		istep = l << 1;
		for (m=0; m<l; ++m) {
			j = m << k;
			/* 0 <= j < N_WAVE/2 */
                        wr =  pgm_read_dword(&(Sinewave[j+N_WAVE/4]));
			wi = -pgm_read_dword(&(Sinewave[j]));
			if (inverse)
				wi = -wi;
			if (shift) {
				wr >>= 1;
				wi >>= 1;
			}
			for (i=m; i<n; i+=istep) {
				j = i + l;
				tr = fix_mpy(wr,fr[j]) - fix_mpy(wi,fi[j]);
				ti = fix_mpy(wr,fi[j]) + fix_mpy(wi,fr[j]);
				qr = fr[i];
				qi = fi[i];
				if (shift) {
					qr >>= 1;
					qi >>= 1;
				}
				fr[j] = qr - tr;
				fi[j] = qi - ti;
				fr[i] = qr + tr;
				fi[i] = qi + ti;
			}
		}
		--k;
		l = istep;
	}
	return scale;
}

/*
  fix_fftr() - forward/inverse FFT on array of real numbers.
  Real FFT/iFFT using half-size complex FFT by distributing
  even/odd samples into real/imaginary arrays respectively.
  In order to save data space (i.e. to avoid two arrays, one
  for real, one for imaginary samples), we proceed in the
  following two steps: a) samples are rearranged in the real
  array so that all even samples are in places 0-(N/2-1) and
  all imaginary samples in places (N/2)-(N-1), and b) fix_fft
  is called with fr and fi pointing to index 0 and index N/2
  respectively in the original array. The above guarantees
  that fix_fft "sees" consecutive real samples as alternating
  real and imaginary samples in the complex array.
*/
int fix_fftr(short f[], long m, short inverse)
{
	long i, N = 1<<(m-1), scale = 0;
	short tt, *fr=f, *fi=&f[N];

	if (inverse)
		scale = fix_fft(fi, fr, m-1, inverse);
	for (i=1; i<N; i+=2) {
		tt = f[N+i-1];
		f[N+i-1] = f[i];
		f[i] = tt;
	}
	if (! inverse)
		scale = fix_fft(fi, fr, m-1, inverse);
	return scale;
}

The licensing and versioning on this thing apparently works as follows: Add your name and date to the list of authors and post it in your corner of the web. That’s all.

Published on

First internet enabled Game Boy Pokemon trade is a fact

IT WORKS!!! I traded a Pokemon from one Game Boy to another over the internet.

Last week I blogged about trading Pokemon with an Arduino, which made some people wonder if you could trade over the internet.

This is not a new idea, but one that was previously considered impossible. The Game Boy uses a synchronous protocol that does not tolerate the latency associated with the internet.

But only when using its internal clock. When using an external clock it will go as slow as you want. Normally one of the Game Boy’s drives the clock line. The solution therefore is to trick both Game Boy’s into thinking the other Game Boy is driving the clock line.

This trick is specific to the first and maybe second generation of Pokemon games, and it is a lot slower than a direct Link Cable, but it works nonetheless!

It’s not quite ready yet, so a post with more details is coming soon. Keep an eye on my RSS, Twitter or Youtube.

The gist of it is that a Teensy puts the Game Boy in slave mode and forwards the data over USB HID to a Chrome App that uses WebRTC to transfer the data over the internet.